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Vorwort: Die folgenden Ausführungen befassen sich mit einem mathematischen Thema, das aber nicht wie 
im Mathe-Buch, sondern verständlich erläutert vorgestellt wird. Da der Verfasser aus der Elektro-
technik kommt, hat er zum Teil andere Sichtweisen auf die Dinge. Vielleicht hilft gerade diese Be-
sonderheit beim Verständnis der beschriebenen Mathematik. 

 
Achtung:  Trotz aller Sorgfalt bei der Erarbeitung kann keine Garantie für die Richtigkeit der Inhalte über-

nommen werden. 
 

 
 
Eine Bemerkung zuvor: Also die Analysis ist schon eine recht komplexe Angelegenheit. Es gibt aber zum Bei-
spiel für die Untersuchung von Funktionen und ihren Graphen bestimmte Vorgehensweisen, die sich immer 
wiederholen. Das kann man gut einüben. Hier in der Soforthilfe habe ich die Theorie bis zu den sogenannten 
Rotationskörpern geführt, mit denen sich die Leistungskurse beschäftigen. 
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Merkmale von Funktionen 
 
 
Funktionsgleichung 
 

𝑦 = 𝑓(𝑥)  Formel, mit deren Hilfe man ausrechnet, welche y-Werte zu welchen x-Werten ge-
hören 

 
 
Definitionsbereich 
 

Zahlenbereich, den die Variable 𝑥 nicht verlassen darf. 
Wenn zum Beispiel eine Funktion nur im Bereich 0 ≤ 𝑥 ≤ 5 definiert ist, existiert sie nur von 𝑥 = 0 bis 
𝑥 = 5. Unter- und oberhalb dieser Werte für 𝑥 darf man im Diagramm keinen Kurvenverlauf zeichnen. 

 
 
Wertebereich 
 

Zahlenbereich, den die Variable 𝑦 beansprucht.  
Die Größe des Wertebereiches ist abhängig von der jeweiligen Funktionsgleichung. 

 
 
Beschränktheit und Schranken 
 

Der Wertebereich übersteigt eine obere Schranke nicht (Funktion ist nach oben beschränkt) oder un-
terschreitet eine untere Schranke nicht (Funktion ist nach unten beschränkt). Kann die Funktion belie-
big große und kleine Funktionswerte annehmen, heißt sie unbeschränkt. 

 
 
Wertetabelle 
 

Tabellarische Darstellung der Funktionswerte = 𝑦-Werte (zweite Zeile) unter den zugehörigen 𝑥-Wer-
ten (erste Zeile), aus denen sie berechnet wurden: 

 

𝑥 -4 -3 -2 -1 0 1 2 3 4 5 

𝑓(𝑥)           

 
 
Graph 
 

Graphische Darstellung der Funktion im x-y-Diagramm – als Graph bezeichnet man die so für 𝑦 = 𝑓(𝑥) 
entstehende Kurve. 

 
 
Schnittpunkte mit Koordinatenachsen 
 

Schnittpunkte mit x-Achse (Nullstellen) 
𝑓(𝑥0) = 0 setzen und die zugehörigen 𝑥0 = 𝑆𝑥  bestimmen. Die Ergebnisse sind die Stellen bzw. x-
Werte, an denen die Kurve die x-Achse schneidet. (Schnitt-)Punkte mit der x-Achse gibt man an in der 
Form 
 

𝑆(𝑆𝑥|𝑆𝑦) = 𝑆(𝑆𝑥|0) 

 
Schnittpunkte mit y-Achse 
𝑓(0) ausrechnen, d. h. für 𝑥 einfach Null einsetzen, und somit 𝑓(0) = 𝑆𝑦 bestimmen. Das Ergebnis ist 

der Funktionswert = y-Wert, bei dem die Kurve die y-Achse schneidet. (Schnitt-)Punkte mit der y-Achse 
gibt man an in der Form 
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𝑆(𝑆𝑥|𝑆𝑦) = 𝑆(0|𝑆𝑦) 

 
 
 
Symmetrie 
 

Achsensymmetrie zur y-Achse liegt vor bzw. ein Kurvenverlauf ist axialsymmetrisch zur y-Achse, wenn 
gilt: 
 
𝑓(𝑥) = 𝑓(−𝑥) 
 
𝑓(𝑥) ist dann eine gerade Funktion. 
 
Punktsymmetrie zum Koordinatenursprung liegt vor, wenn gilt: 
 
𝑓(𝑥) = −𝑓(−𝑥) 
 
𝑓(𝑥) ist dann eine ungerade Funktion. 

 
 
Stetigkeit und Unstetigkeit 
 

Stetigkeit Eine Funktion ist an der Stelle 𝑥𝑆 stetig, wenn: 
a) die Funktion für 𝑥𝑆 und Umgebung definiert ist und  
b) der Grenzwert lim

𝑥→𝑥𝑆
𝑓(𝑥) existiert und  

c) 𝑓(𝑥𝑆) = lim
𝑥→𝑥𝑆

𝑓(𝑥). 

Je kleiner der Abstand von 𝑥 bis 𝑥𝑆 ist, desto kleiner wird auch die Differenz 
𝑓(𝑥) − 𝑓(𝑥𝑆). 

 
Polstelle Eine Funktion ist an der Polstelle 𝑥𝑃 nicht definiert d. h. unstetig. Sie kann an der 

Polstelle nicht berechnet werden. Der Sachverhalt entsteht zum Beispiel bei gebro-
chen rationalen Funktionen (Funktionsgleichung besteht aus einem Bruch mit Zäh-
ler und Nenner), bei denen sich für den Nenner an der Polstelle Null ergibt, wäh-
rend der Zähler von Null verschieden ist (Division durch Null nicht möglich). 
 

Polgerade:  Senkrechte Gerade 𝑥 = 𝑥𝑃 durch den Pol an der Stelle 𝑥𝑃 
 
Lücke: Eine Funktion ist an der Stelle 𝒙𝑳 nicht definiert d. h. unstetig, kann aber unmittel-

bar davor und unmittelbar danach berechnet werden. Der Sachverhalt entsteht 
zum Beispiel bei gebrochen rationalen Funktionen (Funktionsgleichung besteht aus 
einem Bruch mit Zähler und Nenner), bei denen sich für Zähler und Nenner an der 
Lücke Null ergibt (Division Null durch Null unbestimmt bzw. nicht möglich). 

 
hebbare Lücke: Zum Beispiel kann der Linearfaktor (𝑥 − 𝑥𝐿) – das ist der 

Faktor, der die Lücke erst verursacht – aus Zähler und Nen-
ner der Funktionsgleichung ausgeklammert werden. Dann 
kann man die gebrochen rationale Funktion durch den Li-
nearfaktor (𝑥 − 𝑥𝐿) kürzen. Damit fällt er in Zähler und 
Nenner weg, sodass die Lückenproblematik nicht mehr be-
steht. Trotzdem bleibt die Ausgangsfunktion an der Lücke 
undefiniert. 

 
nicht hebbare Lücke Es existieren keine mathematischen Möglichkeiten zur 

exakten Berechnung des Funktionswertes an der Lücke. 
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Sprung Eine Funktion springt an der Stelle 𝑥𝑆, d. h. sie ist dort unstetig, wobei sie von links 
kommend (𝑥 < 𝑥𝑆) einen anderen Funktionswert besitzt, als wenn man sich dem 
Sprung von rechts nähert (𝑥𝑆 < 𝑥). Das gilt zum Beispiel für die Sprungfunktion 
𝑦 = 𝑓(𝑥) = 𝑠(𝑥) und auch für die Vorzeichenfunktion 𝑦 = 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑥). Links-
seitiger und rechtsseitiger Grenzwert sind jeweils verschieden. 

 
 
Verhalten im Unendlichen (Asymptote) 
 

Asymptote Gerade, der sich der Kurvenverlauf nähert, wenn 𝑥 → +∞ oder 𝑥 → −∞ strebt. 
Der Graph nähert sich der Asymptote unendlich weit an, ohne sie jemals zu errei-
chen. Der Verlauf der Asymptoten – sofern eine solche existiert – lässt sich berech-
nen. Zum Beispiel nähert sich die Funktion 𝑦 = 𝑓(𝑥) = 𝑒−𝑥 für 𝑥 → +∞ an die 
Asymptote 𝑦 = 0 an. 

 
 
Anstieg 
 

Gibt an, wie groß die Steigung oder das Gefälle einer Funktion an einer bestimmten Stelle ist. Der An-
stieg 𝑚 errechnet sich durch: 
 

𝑚 =
∆𝑦

∆𝑥
 

 
oder 
 

𝑚 =
𝑑𝑦

𝑑𝑥
 

 
Erster Ausdruck ist der Differenzenquotient, der angibt, welches Maß ∆𝑦 die Kurve im Verlaufe von ∆𝑥 
steigt oder fällt. Lässt man ∆𝑥 gegen Null gehen, verwandelt sich der Differenzenquotient in den Diffe-
renzialquotienten – das ist der zweite Ausdruck (vgl. Differenzialrechnung). Es gilt außerdem für den 
Anstieg 𝑚 einer Funktion: 
 
𝑚 = tan⁡(α) 
 
mit 𝛼 als Anstiegswinkel. Im Umkehrschluss ergibt sich: 
 
𝛼 = arctan⁡(𝑚) 

 
 
Monotonie 
 

streng monoton steigend Eine Funktion 𝑓(𝑥) steigt im betrachteten Intervall ununterbrochen 
an. Es gilt 𝑓(𝑥1) < 𝑓(𝑥2) für 𝑥1 < 𝑥2. Das heißt weiter rechts lie-
gende Punkte auf der Kurve liegen höher als Punkte links davon. Oder 
man betrachtet den Anstieg als erste Ableitung der Funktion 𝑓(𝑥). 
Streng monoton steigend ist dann gegeben, wenn 𝑓´(𝑥) > 0 für alle 
𝑥 im betrachteten Intervall gilt. 

 
monoton steigend Eine Funktion 𝑓(𝑥) fällt im betrachteten Intervall nie, kann aber Be-

reiche ohne Anstieg bzw. mit Anstieg gleich Null haben. Dann gilt 
𝑓(𝑥1) ≤ 𝑓(𝑥2) für 𝑥1 < 𝑥2 bzw. 𝑓´(𝑥) ≥ 0 für alle x im betrachteten 
Intervall. In Bereichen mit Anstieg gleich Null verläuft die Kurve paral-
lel zur x-Achse. Das passiert zum Beispiel an allen lokalen Extremwer-
ten – also an Maxima und an Minima. Denn für die gilt bekanntlich 
die Bedingung 𝑓´(𝑥) = 0. 
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streng monoton fallend Eine Funktion 𝑓(𝑥) fällt im betrachteten Intervall ununterbrochen ab. 
Es gilt 𝑓(𝑥1) > 𝑓(𝑥2) für 𝑥1 < 𝑥2. Das heißt weiter rechts liegende 
Punkte auf der Kurve liegen tiefer als Punkte links davon. Oder man 
betrachtet den Anstieg als erste Ableitung der Funktion 𝑓(𝑥). Streng 
monoton steigend ist dann gegeben, wenn 𝑓´(𝑥) < 0  für alle 𝑥 im 
betrachteten Intervall gilt. 
 

monoton fallend Eine Funktion 𝑓(𝑥) steigt im betrachteten Intervall nie, kann aber 
Bereiche ohne Anstieg bzw. mit Anstieg gleich Null haben. Dann gilt 
𝑓(𝑥1) ≥ 𝑓(𝑥2) für 𝑥1 < 𝑥2 bzw. 𝑓´(𝑥) ≤ 0 für alle x im betrachteten 
Intervall. In Bereichen mit Anstieg gleich Null verläuft die Kurve paral-
lel zur x-Achse. Das passiert zum Beispiel an allen lokalen Extremwer-
ten – also an Maxima und an Minima. Denn für die gilt bekanntlich 
die Bedingung 𝑓´(𝑥) = 0. 
 

 
Extremwerte 
 

𝑓(𝑥𝐸) heißt lokales Maximum der Funktion, wenn in der Umgebung alle Werte für 𝑓(𝑥) kleiner als 
𝑓(𝑥𝐸) sind. 
 
𝑓(𝑥𝐸) heißt lokales Minimum der Funktion, wenn in der Umgebung alle Werte von 𝑓(𝑥) größer als 
𝑓(𝑥𝐸) sind. 
 
Die Tangente in Extrempunkten der Funktion ist immer waagerecht, d. h. parallel zur x-Achse. Sie hat 
damit den Anstieg Null (Suchkriterium lokaler Extremwerte durch Gleichsetzen der ersten Ableitung 
der Funktion mit Null und Berechnung der zugehörigen x-Werte). 
 
Durchläuft eine Funktion ein Minimum, nimmt ihr Anstieg dabei kontinuierlich zu (Gefälle der Kurve 
verringert sich bis auf Null, ehe Steigung beginnt und weiter zunimmt), der Anstieg des Anstiegs der 
Kurve = zweite Ableitung ist deshalb bei einem Minimum immer positiv. 
 
Durchläuft eine Funktion ein Maximum, nimmt ihr Anstieg dabei kontinuierlich ab (Steigung der Kurve 
verringert sich bis auf Null, ehe Gefälle beginnt), der Anstieg des Anstiegs der Kurve = zweite Ableitung 
ist deshalb bei einem Maximum immer negativ. 
 
Sollte die zweite Ableitung in einem scheinbaren Extrempunkt einmal Null sein, handelt es sich entwe-
der 
a) trotzdem um einen Extrempunkt (am Graphen erkennbar) oder 
b) nicht um einen Extremwert (Kurve durchläuft eine waagerechte Stelle mit Anstieg gleich Null. Wenn 
sie vorher schon gestiegen ist, steigt sie aber nach dieser Stelle weiter an bzw. wenn sie vorher schon 
gefallen ist, fällt sie nach dieser Stelle weiter ab – auch am Graphen erkennbar.) 

 
 
Wendepunkte 
 

Punkt 𝑥𝑊, an dem die Funktion 𝑓(𝑥) ihr Krümmungsverhalten ändert. So etwas passiert unter ande-
rem zwischen lokalen Extrema unterschiedlicher Art – zum Beispiel einem Maximum und einem Mini-
mum. Das Maximum erfordert mit zunehmendem 𝑥 eine Rechtskurve, da der Graph den Maximalwert 
erreichen und danach wieder fallen soll – das geht nur mit einer Rechtsorientierung. Nähert sich der 
Graph nun mit zunehmendem 𝑥 einem Minimum an, kann er das Minimum und den darauffolgenden 
Anstieg – sonst wäre es kein Minimum – nur realisieren, wenn er eine Linkskurve durchläuft. 
 
Man kann diesen Sachverhalt aber auch anders interpretieren: 
 
Rechtskrümmung, dann Linkskrümmung Anstieg durchläuft an dieser Stelle ein lokales Minimum, d. 

h. Anstieg des Anstiegs = zweite Ableitung muss an dieser 
Stelle Null (notwendige Bedingung für einen Wendepunkt) 
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und die dritte Ableitung wegen des Minimums größer Null 
(hinreichende Bedingung für einen Wendepunkt) sein. Die 
Rechtskrümmung bedingt eine Abnahme des Anstiegs, ehe 
die Linkskrümmung wieder zu einer Vergrößerung der 
Steilheit führt. 

 
Linkskrümmung, dann Rechtskrümmung Anstieg durchläuft an dieser Stelle ein lokales Maximum, d. 

h. Anstieg des Anstiegs = zweite Ableitung muss an dieser 
Stelle auch Null (notwendige Bedingung für Wendepunkt) 
und die dritte Ableitung wegen des Maximums kleiner Null 
(hinreichende Bedingung für einen Wendepunkt) sein. Die 
Linkskrümmung bedingt eine Zunahme des Anstiegs, ehe 
die Rechtskrümmung wieder zu einer Verringerung der 
Steilheit führt. 

 
 Ist die dritte Ableitung gleich Null (hinreichende Bedingung 

für einen Wendepunkt nicht erfüllt), hat der Anstieg des 
Ausgangsgraphen = erste Ableitung im in Frage kommen-
den Bereich einen konstanten Wert. Das erzeugt im An-
stieg des Anstiegs = zweite Ableitung an dieser Stelle zwar 
eine Null (notwendige Bedingung für einen Wendepunkt), 
aber es handelt sich dann nicht um ein Maximum oder Mi-
nimum im Anstieg des Ausgangsgraphen und somit auch 
nicht um einen Wendepunkt. Eine Funktion, bei der das 
der Fall ist, durchläuft zum Beispiel eine Rechtskurve, mün-
det danach in ein Stück geradlinigen, linearen Verlauf (An-
stieg = erste Ableitung = konstant und damit Anstieg des 
Anstiegs = zweite Ableitung = Null und davon die Ableitung 
= dritte Ableitung ergibt nochmals Null) ehe der Graph der 
Funktion wieder in eine weitere Rechtskurve übergeht. 

 
Wem das Nachvollziehen dieser Zusammenhänge schwerfällt, der nehme sich seinen graphischen Ta-
schenrechner und tippe als erste Funktion zum Beispiel eine Funktion dritten Grades (mit Extrema und 
Wendepunkt/en), als zweite Funktion die zugehörige erste Ableitung, als dritte Funktion die zugehö-
rige zweite Ableitung und als vierte Funktion die zugehörige dritte Ableitung ein. Dann lassen Sie sich 
alle vier Funktionen anzeigen und studieren noch einmal am praktischen Objekt die dargelegte Theo-
rie. Sicher denken Sie daran, dass eine Änderung an der Ausgangsfunktion auch Korrekturen an den 
Ableitungen bedingen kann. 

 
 
Umkehrfunktion 
 

Eine Funktion 𝑦 = 𝑓(𝑥) heißt umkehrbar, wenn es zu jedem 𝑦 aus dem Wertebereich nur ein 𝑥  im De-

finitionsbereich mit 𝑓(𝑥) = 𝑦 gibt. Die Umkehrfunktion von 𝑓(𝑥) wird mit 𝑓(𝑥) bezeichnet (gespro-
chen f quer). Umkehrbar sind streng monotone Funktionen, da dann jeder Funktionswert 𝑦 nur einmal 
vorkommt. Andernfalls – zum Beispiel bei einer Parabel 𝑦 = 𝑥2, bei der alle Funktionswerte doppelt 
vorkommen – ist es nicht eindeutig, auf welchem Teil der Funktionskurve man sich gerade befindet. 
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Beziehungen des Graphen von Funktionen mit anderen grafischen 
Objekten 
 
 
Sekante 
 

Eine Gerade, die den Graphen einer Funktion 𝑦 = 𝑓(𝑥) in zwei Punkten schneidet. Schiebt man einen 
der beiden Punkte zum anderen Punkt, verwandelt sich die Sekante in eine Tangente, da sie den Gra-
phen dann nur noch in diesem einen Punkt berührt. 

 
 
Normale 
 

Eine Gerade, die den Graphen einer Funktion 𝑦 = 𝑓(𝑥) in einem Punkt 𝑃(𝑥0|𝑓(𝑥0)) senkrecht schnei-
det. Für die Normale gilt: 

 

𝑛(𝑥) = −
1

𝑓´(𝑥0)
∙ (𝑥 − 𝑥0) + 𝑓(𝑥0) 

 

Der Ausdruck −
1

𝑓´(𝑥0)
 sorgt für den richtigen Anstieg der Normalen – gegenüber der geschnittenen 

Ausgangsfunktion um 90° gedreht. Mit (𝑥 − 𝑥0) bewegt man sich in Abhängigkeit von 𝑥 auf der Nor-
malen quasi hin und her. Und die Größe von 𝑓(𝑥0) bewirkt, dass die Normale mit der obigen Glei-
chung die geschnittene Ausgangsfunktion genau im Punkt 𝑥0 schneidet. 

 
 
Tangente an den Graphen einer Funktion 
 

Eine Gerade, die den Graphen einer Funktion 𝑦 = 𝑓(𝑥) im Punkt 𝑃(𝑥𝑃|𝑓(𝑥𝑃)) berührt, heißt Tangente 
𝑡. Es gilt: 
 
𝑡(𝑥) = 𝑚 ∙ 𝑥 + 𝑛 = 𝑓´(𝑥𝑃) ∙ 𝑥 + 𝑦𝑃 = 𝑓´(𝑥𝑃) ∙ 𝑥 + 𝑓(𝑥𝑃) 
 
mit 𝑚 = 𝑓´(𝑥𝑃) als Anstieg der Funktion 𝑓(𝑥) im Punkt 𝑃 und 𝑛 = 𝑦𝑃 = 𝑓(𝑥𝑃) als Ordinate = y-Wert 
der Funktion im Punkt 𝑃. 

 
 
Schnittpunkte des Graphen einer Funktion mit einer Geraden 
 

Die x-Koordinaten von Schnittpunkten des Graphen einer Funktion 𝑦 = 𝑓(𝑥) und einer Geraden 𝑔(𝑥) 
errechnen sich über das Gleichsetzen der Formeln für 𝑓(𝑥) und 𝑔(𝑥): 
 
𝑓(𝑥𝑆) = 𝑔(𝑥𝑆) 
 
Anschließend können die y-Koordinaten über 
 
𝑦𝑆 = 𝑓(𝑥𝑆) = 𝑔(𝑥𝑆) 
 
errechnet werden. 𝑓(𝑥𝑆) und 𝑔(𝑥𝑆) müssen den gleichen Wert ergeben, sonst kann es sich an der 
Stelle 𝑥𝑆 um keinen Schnittpunkt handeln (Funktion und Gerade hätten unterschiedliche y-Werte). 

 
 
Schnittpunkte der Graphen zweier Funktionen 
 

Die x-Koordinaten von Schnittpunkten der Graphen einer Funktion 𝑓1(𝑥) und einer Funktion 𝑓2(𝑥) er-
rechnen sich über das Gleichsetzen der Formeln für 𝑓1(𝑥) und 𝑓2(𝑥): 
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𝑓1(𝑥𝑆) = 𝑓2(𝑥𝑆) 
 
Anschließend können die y-Koordinaten des Schnittpunktes über 
 
𝑦𝑆 = 𝑓1(𝑥𝑆) = 𝑓2(𝑥𝑆) 
 
errechnet werden. Auch 𝑓1(𝑥𝑆) und 𝑓2(𝑥𝑆) müssen gleiche Werte ergeben, sonst kann es sich an der 
Stelle 𝑥𝑆 um keinen Schnittpunkt handeln (die Funktionen hätten unterschiedliche y-Werte). 

 
 
Fläche zwischen dem Graphen einer Funktion und der x-Achse 
 

Die Fläche zwischen dem Graphen der Funktion 𝑦 = 𝑓(𝑥) und der x-Achse zwischen den Punkten 𝑥𝐴 
und 𝑥𝐵  berechnet sich über: 
 

𝐴 = |∫ 𝑓(𝑥)𝑑𝑥
𝑥𝐵

𝑥𝐴

| 

 
mit der Fläche A in Flächeneinheiten FE. 
 
Achtung: Liegt der Graph oberhalb der x-Achse, ergeben sich für das Integral positive Ergebnisse. Ne-
gative Ergebnisse entstehen, wenn der Graph dagegen unterhalb der x-Achse verläuft – deshalb die 
Betragsbildung. 
 
Schneidet der Graph von 𝑓(𝑥) die x-Achse (unter Umständen mehrfach), muss das Integral von 𝑥𝐴 bis 
𝑥𝐵  für jeden Abschnitt des Graphen zwischen den Schnittpunkten mit der x-Achse einzeln berechnet 
werden, sonst heben sich positive und negative Flächenanteile gegenseitig auf, was für den Flächenin-
halt ein falsches Ergebnis liefert. Die Beträge aller Flächenanteile addieren sich. 

 
 
Fläche zwischen den Graphen zweier Funktionen 
 

Die Fläche zwischen den Graphen zweier Funktionen 𝑓1(𝑥) und 𝑓2(𝑥) zwischen den Punkten 𝑥𝐴 und 𝑥𝐵  
berechnet sich über: 
 

𝐴 = |∫ [𝑓1(𝑥) − 𝑓2(𝑥)⁡]𝑑𝑥
𝑥𝐵

𝑥𝐴

| = |∫ 𝑓1(𝑥)𝑑𝑥
𝑥𝐵

𝑥𝐴

−∫ 𝑓2(𝑥)𝑑𝑥
𝑥𝐵

𝑥𝐴

| 

 
mit der Fläche A in Flächeneinheiten FE. 
 
Achtung: Liegt der Graph von 𝑓1(𝑥) vollständig oberhalb des Graphen von 𝑓2(𝑥), ergeben sich bei der 
Integration positive Ergebnisse. Negative Ergebnisse entstehen, wenn der Graph 𝑓1(𝑥) dagegen unter-
halb des Graphen von 𝑓2(𝑥) verläuft – deshalb die Betragsbildung. 
 
Schneiden sich die Graphen von 𝑓1(𝑥) und 𝑓2(𝑥) (unter Umständen mehrfach), muss das Integral von 
𝑥𝐴 bis 𝑥𝐵  für jeden Abschnitt der Graphen zwischen den Schnittpunkten von 𝑓1(𝑥) und 𝑓2(𝑥) einzeln 
berechnet werden, sonst heben sich positive und negative Flächenanteile gegenseitig auf, was für den 
Flächeninhalt ein falsches Ergebnis liefert. Die Beträge aller Flächenanteile addieren sich. 

 
 
Volumen des Rotationskörpers des Graphen einer Funktion bei seiner Rotation um die x-Achse 
 

Ausgangspunkt ist die Fläche eines Kreises: 
 
𝐴𝐾𝑟𝑒𝑖𝑠 = 𝜋 ∙ 𝑟2 
 
Bei der Volumenberechnung von Rotationskörpern um die x-Achse werden quasi hauchdünne Kreis-
scheiben der Dicke 𝑑𝑥 auf die x-Achse aufgefädelt, deren Radius 𝑟 von 𝑦 = 𝑟 = 𝑓(𝑥) gebildet wird. 
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Das Gesamtvolumen aller Kreisscheiben entspricht dem Volumen des gesuchten Rotationskörpers. 
Man muss also per Integral den Rauminhalt aller Kreisscheiben summieren. Volumen einer einzelnen 
Kreisscheibe: 
 
𝑑𝑉 = 𝐴𝐾𝑟𝑒𝑖𝑠 ∙ 𝑑𝑥 = 𝜋 ∙ 𝑟2 ∙ 𝑑𝑥 = 𝜋 ∙ 𝑓2(𝑥) ∙ 𝑑𝑥 
 
Volumen des gesamten Rotationskörpers zwischen den Punkten 𝑥𝐴 und 𝑥𝐵: 
 

𝑉 = ∫ 𝜋 ∙ 𝑓2(𝑥) ∙ 𝑑𝑥
𝑥𝐵

𝑥𝐴

= 𝜋 ∙ ∫ 𝑓2(𝑥) ∙ 𝑑𝑥
𝑥𝐵

𝑥𝐴

 

 
mit dem Volumen V in Volumeneinheiten. Die Punkte 𝑥𝐴 und 𝑥𝐵  bestimmen die untere/linke und 
obere/rechte Begrenzung des Rotationskörpers. 
 
Schneidet der Graph von 𝑓(𝑥) die x-Achse (unter Umständen mehrfach), muss das Integral von 𝑥𝐴 bis 
𝑥𝐵  für jeden Abschnitt des Graphen zwischen den Schnittpunkten mit der x-Achse einzeln berechnet 
werden, sonst heben sich positive und negative Volumenanteile gegenseitig auf, was für den Volumen-
inhalt ein falsches Ergebnis liefert. Die Beträge aller Volumenanteile addieren sich. 

 
 
Volumen des Rotationskörpers zwischen den Graphen zweier Funktionen bei ihrer Rotation um die x-Achse 
 

Ausgangspunkt ist die Fläche eines Kreisrings: 
 

𝐴𝐾𝑟𝑒𝑖𝑠𝑟𝑖𝑛𝑔 = 𝜋 ∙ 𝑟𝑎𝑢ß𝑒𝑛
2 − 𝜋 ∙ 𝑟𝑖𝑛𝑛𝑒𝑛

2 = 𝜋 ∙ (𝑟𝑎𝑢ß𝑒𝑛
2 − 𝑟𝑖𝑛𝑛𝑒𝑛

2 ) 

 
𝑟𝑎𝑢ß𝑒𝑛 gibt den Außen- und 𝑟𝑖𝑛𝑛𝑒𝑛  den Innenradius des Kreisrings an. 
 
Bei der Volumenberechnung von Rotationskörpern zwischen den Graphen zweier Funktionen 𝑓1(𝑥) 
und 𝑓2(𝑥) und Rotation um die x-Achse werden quasi hauchdünne Kreisringe der Dicke dx auf die x-
Achse aufgefädelt, deren Außenradius 𝑟𝑎𝑢ß𝑒𝑛 vom Graphen der einen Funktion und deren Innenradius 
𝑟𝑖𝑛𝑛𝑒𝑛 vom Graphen der anderen Funktion gebildet wird. Welche Funktion bei den Kreisringen gerade 
außen und welche Funktion gerade innen liegt, hängt von den Funktionswerten der beiden Funktionen 
ab. 
 
Wenn die Funktion 𝑓1(𝑥) im betrachteten Bereich an allen Stellen größere Funktionswerte als die 
Funktion 𝑓2(𝑥) aufweist, kann man einfach wie folgt rechnen. Volumen eines einzelnen Kreisrings: 
 

𝑑𝑉 = 𝐴𝐾𝑟𝑒𝑖𝑠𝑟𝑖𝑛𝑔 ∙ 𝑑𝑥 = 𝜋 ∙ (𝑟𝑎𝑢ß𝑒𝑛
2 − 𝑟𝑖𝑛𝑛𝑒𝑛

2 ) ∙ 𝑑𝑥 = 𝜋 ∙ [𝑓1
2(𝑥) − 𝑓2

2(𝑥)] ∙ 𝑑𝑥 

 
Das Gesamtvolumen aller Kreisringe entspricht dem Volumen des gesuchten Rotationskörpers. Man 
muss also per Integral den Rauminhalt aller Kreisringe summieren. Volumen des gesamten Rotations-
körpers zwischen den Punkten 𝑥𝐴 und 𝑥𝐵: 
 

𝑉 = ∫ 𝜋 ∙ [𝑓1
2(𝑥) − 𝑓2

2(𝑥)] ∙ 𝑑𝑥
𝑥𝐵

𝑥𝐴

= 𝜋 ∙ ∫ [𝑓1
2(𝑥) − 𝑓2

2(𝑥)] ∙ 𝑑𝑥
𝑥𝐵

𝑥𝐴

 

𝑉 = 𝜋 ∙ ∫ 𝑓1
2(𝑥) ∙ 𝑑𝑥

𝑥𝐵

𝑥𝐴

− 𝜋 ∙ ∫ 𝑓2
2(𝑥) ∙ 𝑑𝑥

𝑥𝐵

𝑥𝐴

 

 
mit dem Volumen V in Volumeneinheiten. Die Punkte 𝑥𝐴 und 𝑥𝐵  bestimmen die untere/linke und 
obere/rechte Begrenzung des Rotationskörpers. 
 
Wenn die Funktion 𝑓1(𝑥) im betrachteten Bereich an allen Stellen kleinere Funktionswerte als die 
Funktion 𝑓2(𝑥) aufweist, ergibt sich für die Fläche ein negativer Wert, von dem man abschließend den 
Betrag bilden muss. 
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Schneiden sich die Graphen der Funktionen 𝑓1(𝑥) und 𝑓2(𝑥) im betrachteten Bereich (unter Umstän-
den mehrfach), muss das Integral von 𝑥𝐴 bis 𝑥𝐵  für jeden Abschnitt der Graphen zwischen den Schnitt-
punkten von 𝑓1(𝑥) und 𝑓2(𝑥) einzeln berechnet werden, sonst heben sich positive und negative Volu-
menanteile gegenseitig auf, was für den Volumeninhalt ein falsches Ergebnis liefert. Die Beträge aller 
Volumenanteile addieren sich. 

 
 
Volumen des Rotationskörpers des Graphen einer Funktion bei seiner Rotation um die y-Achse 
 

Ausgangspunkt ist die Funktionsgleichung in der Form 𝑦 = 𝑓(𝑥). Vor Beginn der Rechnung muss sie in 
die Form 𝑥 = 𝑓(𝑦) gebracht werden. Denn wenn der Graph um die y-Achse rotieren soll, muss man ja 
wissen, welchen x-Abstand der Graph an welcher Stelle zur y-Achse hat. Dieser x-Abstand entspricht 
dem Radius des Rotationskörpers, der bei Rotation um die y-Achse entsteht. 
 
In der Regel muss es sich also hier bei der Funktion 𝑦 = 𝑓(𝑥) um eine umkehrbare Funktion handeln, 
damit es zu jedem 𝑦 aus dem Wertebereich nur ein 𝑥 im Definitionsbereich gibt. Umkehrbar sind 
streng monotone Funktionen, da dann jeder Funktionswert 𝑦 nur einmal vorkommt. Oder aber es han-
delt sich um eine achsensymmetrische Funktion zur y-Achse – zum Beispiel eine Parabel 𝑦 = 𝑥2, bei 
der alle Funktionswerte doppelt vorkommen. Für die Rotation um die y-Achse muss man dann nur den 
Teil des Graphen für 0 ≤ 𝑥 ≤ ∞ berücksichtigten. 
 
Für die Fläche eines Kreises gilt erneut: 
 
𝐴𝐾𝑟𝑒𝑖𝑠 = 𝜋 ∙ 𝑟2 
 
Bei der Volumenberechnung von Rotationskörpern um die y-Achse werden quasi hauchdünne Kreis-
scheiben der Dicke dy auf die y-Achse aufgefädelt, deren Radius r von 𝑥 = 𝑓(𝑦) gebildet wird: 𝑥 = 𝑟 =
𝑓(𝑦). Das Gesamtvolumen aller Kreisscheiben entspricht dem Volumen des gesuchten Rotationskör-
pers. Man muss also per Integral den Rauminhalt aller Kreisscheiben summieren. 
 
Volumen einer einzelnen Kreisscheibe: 
 
𝑑𝑉 = 𝐴𝐾𝑟𝑒𝑖𝑠 ∙ 𝑑𝑦 = 𝜋 ∙ 𝑟2 ∙ 𝑑𝑦 = 𝜋 ∙ 𝑓2(𝑦) ∙ 𝑑𝑦 
 
Volumen des gesamten Rotationskörpers: 
 

𝑉 = ∫ 𝜋 ∙ 𝑓2(𝑦) ∙ 𝑑𝑦
𝑦𝐵

𝑦𝐴

= 𝜋 ∙ ∫ 𝑓2(𝑦) ∙ 𝑑𝑦
𝑦𝐵

𝑦𝐴

 

 
mit dem Volumen V in Volumeneinheiten. Die Punkte 𝑦𝐴 und 𝑦𝐵  bestimmen die untere und obere Be-
grenzung des Rotationskörpers. 

 
 
Volumen des Rotationskörpers zwischen den Graphen zweier Funktionen bei ihrer Rotation um die y-Achse 
 

Ausgangspunkt ist erneut die Fläche eines Kreisrings: 
 

𝐴𝐾𝑟𝑒𝑖𝑠𝑟𝑖𝑛𝑔 = 𝜋 ∙ 𝑟𝑎𝑢ß𝑒𝑛
2 − 𝜋 ∙ 𝑟𝑖𝑛𝑛𝑒𝑛

2 = 𝜋 ∙ (𝑟𝑎𝑢ß𝑒𝑛
2 − 𝑟𝑖𝑛𝑛𝑒𝑛

2 ) 

 
𝑟𝑎𝑢ß𝑒𝑛 gibt den Außen- und 𝑟𝑖𝑛𝑛𝑒𝑛  den Innenradius des Kreisrings an. 
 
Bei der Volumenberechnung von Rotationskörpern zwischen den Graphen zweier Funktionen 𝑓1(𝑥) 
und 𝑓2(𝑥) und Rotation um die y-Achse werden quasi hauchdünne Kreisringe der Dicke dy auf die y-
Achse aufgefädelt, deren Außenradius 𝑟𝑎𝑢ß𝑒𝑛 vom Graphen der einen Funktion und deren Innenradius 
𝑟𝑖𝑛𝑛𝑒𝑛 vom Graphen der anderen Funktion gebildet wird. Welche Funktion bei den Kreisringen gerade 
außen und welche Funktion gerade innen liegt, hängt von den x-Werten der beiden Funktionen ab. 
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Vor Beginn der Rechnung müssen die beiden Funktionen in die Form 𝑥 = 𝑓(𝑦) gebracht werden. Denn 
wenn der Graph um die y-Achse rotieren soll, muss man ja wissen, welchen x-Abstand die beiden Gra-
phen an welcher Stelle zur y-Achse haben. Diese x-Abstände entsprechen dem Außen- und Innenra-
dius des Rotationskörpers, der bei Rotation um die y-Achse entsteht. 
 
Wenn die Funktion 𝑥 = 𝑓1(𝑦) im betrachteten Bereich an allen Stellen größere x-Werte als die Funk-
tion 𝑥 = 𝑓2(𝑦) aufweist, kann man einfach wie folgt rechnen. Volumen eines einzelnen Kreisrings: 
 

𝑑𝑉 = 𝐴𝐾𝑟𝑒𝑖𝑠𝑟𝑖𝑛𝑔 ∙ 𝑑𝑦 = 𝜋 ∙ (𝑟𝑎𝑢ß𝑒𝑛
2 − 𝑟𝑖𝑛𝑛𝑒𝑛

2 ) ∙ 𝑑𝑦 = 𝜋 ∙ [𝑓1
2(𝑦) − 𝑓2

2(𝑦)] ∙ 𝑑𝑦 

 
Volumen des gesamten Rotationskörpers: 
 

𝑉 = ∫ 𝜋 ∙ [𝑓1
2(𝑦) − 𝑓2

2(𝑦)] ∙ 𝑑𝑦
𝑦𝐵

𝑦𝐴

= 𝜋 ∙ ∫ [𝑓1
2(𝑦) − 𝑓2

2(𝑦)] ∙ 𝑑𝑦
𝑦𝐵

𝑦𝐴

 

𝑉 = 𝜋 ∙ ∫ 𝑓1
2(𝑦) ∙ 𝑑𝑦

𝑦𝐵

𝑦𝐴

− 𝜋 ∙ ∫ 𝑓2
2(𝑦) ∙ 𝑑𝑦

𝑦𝐵

𝑦𝐴

 

 
mit dem Volumen V in Volumeneinheiten. Die Punkte 𝑦𝐴 und 𝑦𝐵  bestimmen die untere und obere Be-
grenzung des Rotationskörpers. 
 
Wenn die Funktion 𝑥 = 𝑓1(𝑦) im betrachteten Bereich an allen Stellen kleinere x-Werte als die Funk-
tion 𝑥 = 𝑓2(𝑦) aufweist, ergibt sich für die Fläche ein negativer Wert, von dem man abschließend den 
Betrag bilden muss. 
 
Schneiden sich die Graphen der Funktionen 𝑥 = 𝑓1(𝑦) und 𝑥 = 𝑓2(𝑦) im betrachteten Bereich (unter 
Umständen mehrfach), muss das Integral von 𝑦𝐴 bis 𝑦𝐵  für jeden Abschnitt der Graphen zwischen den 
Schnittpunkten von 𝑥 = 𝑓1(𝑦) und 𝑥 = 𝑓2(𝑦) einzeln berechnet werden, sonst heben sich positive und 
negative Volumenanteile gegenseitig auf, was für den Volumeninhalt ein falsches Ergebnis liefert. Die 
Beträge aller Volumenanteile addieren sich. 

 
 
 


